Matching recall and storage in sequence learning with spiking neural networks.

نویسندگان

  • Johanni Brea
  • Walter Senn
  • Jean-Pascal Pfister
چکیده

Storing and recalling spiking sequences is a general problem the brain needs to solve. It is, however, unclear what type of biologically plausible learning rule is suited to learn a wide class of spatiotemporal activity patterns in a robust way. Here we consider a recurrent network of stochastic spiking neurons composed of both visible and hidden neurons. We derive a generic learning rule that is matched to the neural dynamics by minimizing an upper bound on the Kullback-Leibler divergence from the target distribution to the model distribution. The derived learning rule is consistent with spike-timing dependent plasticity in that a presynaptic spike preceding a postsynaptic spike elicits potentiation while otherwise depression emerges. Furthermore, the learning rule for synapses that target visible neurons can be matched to the recently proposed voltage-triplet rule. The learning rule for synapses that target hidden neurons is modulated by a global factor, which shares properties with astrocytes and gives rise to testable predictions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Color Matching of Blends Prepared From Black and White Fibers by Neural Networks (TECHNICAL NOTE)

The color of the blends of pre-colored fibers depends on the ratio of each fiber in the blends. Some theories have been introduced for color matching of blends of pre-colored fibers. Most however, are restricted in scope and accuracy. Kubelka and Munk presented the most applicable theory, which is still used in industry. In this work, the classical Kubelka-Munk method for color prediction of a ...

متن کامل

Sequence learning with hidden units in spiking neural networks

We consider a statistical framework in which recurrent networks of spiking neurons learn to generate spatio-temporal spike patterns. Given biologically realistic stochastic neuronal dynamics we derive a tractable learning rule for the synaptic weights towards hidden and visible neurons that leads to optimal recall of the training sequences. We show that learning synaptic weights towards hidden ...

متن کامل

A New Method for Detecting Ships in Low Size and Low Contrast Marine Images: Using Deep Stacked Extreme Learning Machines

Detecting ships in marine images is an essential problem in maritime surveillance systems. Although several types of deep neural networks have almost ubiquitously used for this purpose, but the performance of such networks greatly drops when they are exposed to low size and low contrast images which have been captured by passive monitoring systems. On the other hand factors such as sea waves, c...

متن کامل

Sequence Learning and Planning on Associative Spiking Neural Network

We have been building an auto/heteroassociative spiking neural network combined with a working memory model. In this model, a statedriven forward sequence and a goal-driven backward sequence on the associative network are respectively represented by a sequence of synchronous firing in a particular gamma subcycle during a theta oscillation. These forward and backward sequence firings are transmi...

متن کامل

Construction cost estimation of spherical storage tanks: artificial neural networks and hybrid regression—GA algorithms

One of the most important processes in the early stages of construction projects is to estimate the cost involved. This process involves a wide range of uncertainties, which make it a challenging task. Because of unknown issues, using the experience of the experts or looking for similar cases are the conventional methods to deal with cost estimation. The current study presents data-driven metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 33 23  شماره 

صفحات  -

تاریخ انتشار 2013